PREDICTION OF HOSPITAL READMISSION IN HEART FAILURE PATIENTS: A DATA-DRIVEN ANALYSIS

Category
PO

by

QINYI HU, Bachelor of Art

APPROVED:

WENYAW CHAN, PhD

HULIN WU, PhD

 

JOSEPH

 

MD

 

                 B. MCCORMICK,       

JOSEPH MCCORMICK, MD


 

Copyright

by

Qinyi Hu, Bachelor of Art, Master of Science

2022


 

PREDICTION OF HOSPITAL READMISSION IN HEART FAILURE PATIENTS: A

DATA-DRIVEN ANALYSIS

by

QINYI HU

BA, Wake Forest University, 2020

Presented to the Faculty of The University of Texas

School of Public Health

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

THE UNIVERSITY OF TEXAS

SCHOOL OF PUBLIC HEALTH

Houston, Texas

December 2022


 

ACKNOWLEDGEMENTS

I am grateful to Dr. Hulin Wu, Dr. Wenyaw Chan, and Dr. McCormick B. Joseph for  their guidance. I appreciate Wei Tao for her contributions on identification of Type 2 diabetes Mellitus, and Junwei Lu for his contributions on cleaning hypertension medication data in

this study.


 

PREDICTION OF HOSPITAL READMISSION IN HEART FAILURE PATIENTS: A

DATA-DRIVEN ANALYSIS

Qinyi Hu, BA, MS

The University of Texas

School of Public Health, 2022

Thesis/Dissertation Chair: Hulin Wu, PhD

Background and aims: The high rate of readmissions after heart failure (HF) hinders

the patients’ recovery, and increases their financial burdens. Therefore, it is important for

clinicians and researchers to identify risk factors of heart-failure (DHF) hospitalization. We    explored the relationship of HF readmission with HF types, age, gender, race, type-2 diabetes

Mellitus (T2DM), hypertension medications, and vital signs.

Methods: Data source was the electronic health records provided by the Cerner

Health Facts® database, a comprehensive dataset that includes de-identified patient

information, with healthcare records over 63 million patients for 85 systems with 750

hospitals and healthcare facilities in the United States from 2000 to 2018. Patients who have  at least one International Classification of Disease 9 diagnosis code of HF, and at least one    HF medication and hospitalization record were identified as the study cohort. Age, ethnicity, heart-failure types, Type 2 diabetes Mellitus, hypertension medication intake, and vital signs

were considered as potential risk factors. Missing data was imputed by MICE package.

Purposeful variable selection was used for the variable selection of predict model. Stepwise


 

selection by Akaike information criterion (AIC) and lasso regression method were performed

as comparisons of purposeful variable selection.

Results: In total, 135,253 inpatients are included, of which 96627 (%) patients are

identified as HF readmission patients, and 38626 (%) patients are not readmitted for HF.

Age, gender, race, HF types, ACE inhibitors intake, Beta blockers intake, Diuretics intake,

Calcium channel blockers intake, Angiotensin receptor blockers intake, Antiadrenergic

inhibitors intake, mean measurement of systolic blood pressure, Body Mass Index (BMI) and height are predictors of HF readmission in a logistic regression model. Area under Receiver

operator characteristics (ROC) curve is 0.539, so the model is a bad discriminatory

performance.

Conclusion: Heart failure readmission is associated with patients’ age, gender, race, heart failure types, systolic blood pressure, Body Mass Index (BMI) height, and intake of

hypertension medications including ACE inhibitors, Beta blockers, Diuretics, Calcium

channel blockers, Angiotensin receptor blockers, and Antiadrenergic inhibitors. Future

improvements are needed to enhance the predictive ability of the model.


 

TABLE OF CONTENTS

List of Tables ................................................................................................................ i

List of Figures .............................................................................................................. ii

List of Appendices ...................................................................................................... iii

Background ................................................................................................................... 1

Introduction and Public Health Significance .......................................................... 1

Literature Review..................................................................................................... 2

Specific Aims........................................................................................................... 3

Methods.......................................................................................................................... 4

Data Source and Study Population ......................................................................... 4

Data cohort selection................................................................................................ 5

Variable Definition ................................................................................................. 7

Missing data report ................................................................................................. 9

Summary statistics ................................................................................................ 11

Model and Variable Selection, with Assumptions Check .................................... 15

Human Subjects Considerations ........................................................................... 21

Results.......................................................................................................................... 21

Discussion ................................................................................................................... 27

Conclusion  .................................................................................................................. 28

Appendices................................................................................................................... 30

References.................................................................................................................... 44


 

LIST OF TABLES

Table 1: Baseline Characteristics and Demographic Factors for Study Cohort ......... 13

Table 2: Summary Statistics of HF Patients’ Readmission Status Versus Eight Groups

ofHypertension Medication .................................................................... 14

Table 3: Summary Statistics ofHF Patients’ Readmission Status Versus Seven Vital

Signs........................................................................................................... 15

Table 4: Summary Table of Final Model (ranked from the largest to the smallest odd

ratio)........................................................................................................... 22


 

LIST OF FIGURES

Figure 1: Flow Chart of Cohort Selection...................................................................... 7

Figure 2: Histogram and Patternof Missing Data ...................................................... 10

Figure 3: Log-odds (readmission | age) vs median points ofage in 4 groups ............ 18

Figure 4: Log-odds (readmission | mean systolic bp) vs median points of mean

systolic bp in 4 groups .............................................................................. 19

Figure 5: Log-odds (readmission | mean BMI) vs median points of mean BMI in 4

groups......................................................................................................... 19

Figure 6: Log-odds (readmission | mean height) vs median points of mean height in 4

groups......................................................................................................... 20

Figure 7: ROC Curve and AUC Value ....................................................................... 27


 

LIST OF APPENDICES

Appendix A:  Five-number Summaryand Histogram of Age ................................... 30

Appendix B: Five-number Summary and Histogram of Mean Systolic Blood Pressure ...................................................................................................................................... 30

Appendix C: Five-numberSummary and Histogram of Mean BMI .......................... 31

Appendix D: Five-numberSummary and Histogram of Mean Height........................ 31

Appendix E: Step 1 of Purposeful Variable Selection: Separate Univariate Logistic

Regression Analysis for Each Covariate (Likelihood Ratio Test)............. 32

Appendix F: Step 1 of Purposeful Variable Selection: Chi-square Test Result and

Expected Tables of Contingency Tables.................................................... 34

Appendix G: Step 2 ofPurposeful Variable Selection: Wald Test Results of Full

Model ........................................................................................................ 37

Appendix H: Step 2 of Purposeful Variable Selection: Wald Test Results of Reduced

Model ........................................................................................................ 37

Appendix I: Step 2  of Purposeful Variable Selection: Likelihood Ratio Test Resultof

Full Model.................................................................................................. 37

Appendix J: Step 2 of Purposeful Variable Selection: Likelihood Ratio Test Resultof

Reduced Model ......................................................................................... 38

Appendix K: Step 2 ofPurposeful Variable Selection: Partial Likelihood Ratio Test

Result  ........................................................................................................ 38

Appendix L: Step 3 of Purposeful Variable Selection: Potential Confounders Check 38

Appendix M: Step 4 of Purposeful Variable Selection: R result of Preliminary Main

Effect Model ............................................................................................. 40

Appendix N: R result of Stepwise Selection................................................................ 41

Appendix O: Result of LassoSelection ...................................................................... 42

Appendix P: R result of Final Model .......................................................................... 43


 

BACKGROUND

Introduction and Public Health Significance

Approximately 5.7 million American adults are living with heart failure and the

projections are that the prevalence of HF will increase 46% from 2012 to 2030 with greater

than 8 million adults living with the chronic condition (Ziaeian, Boback, and Gregg C

Fonarow, 2016). According to the CDC, heart failure (HF) costs the nation an estimated

$30.7 billion in 2012. This total includes the cost of health care services, medicines to treat   heart failure, and missed days of work (Benjamin EJ, et al., 2019). Heart failure represents a

global public health threat.

High rates of readmissions after heart failure damage improvement of patients’

health, medical resources, and financial costs. Since heart failure is a chronic condition, heart

failure hospitalization is followed by high readmission and mortality rates. More than 25

percent of patients hospitalized for heart failure will be readmitted to the hospital within 30

days of discharge. According to 2012 research, the top reason for readmission with the

Medicare fee-for-service patient population is for patients suffering from heart failure. What is more, the Affordable Care Act instituted a financial penalty for excessive readmissions for hospitals that is capped at 3% of a hospital’s total Medicare payments for 2015 and beyond

(Ziaeian, Boback, and Gregg C Fonarow, 2016), which largely increases the financial

pressure. Therefore, it is important for clinicians and researchers to identify risk factors of

heart-failure hospitalization, in order to reduce the hospital readmission for heart-failure

patients.


 

Literature Review

Our study focuses on risk factors that influence readmission in heart failure patients.

Since different types of HF need different medication treatment, and therapies proven to

work for systolic heart failure don't necessarily work for diastolic heart failure, it is necessary for us to categorize and compare patients with different types of heart failure. Diastolic heart   failure, in which the left ventricle stiffens, is different from systolic heart failure, in which the left ventricle becomes weak and flabby. Both diastolic and systolic heart failure are left-sided

heart failure. Besides these two types, heart failure could also impact the right side of the

heart. As researchers search for the best treatments for heart failure, controlling blood

pressure is the key strategy. Also, heart-protecting drugs can help to reduce the symptoms.

Age, race, high blood pressure, and diabetes has been proven to be risk factors of

diastolic heart failure. In previous research and studies, the effect of all kinds of HF on the

elderly population is disproportionate. According to a meta-analysis in 2021, the HF patients had an average age of 76.3 years. Even assuming that the incidence for a specific age, sex, or ethnicity is stable, heart failure prevalence shows a steady elevation over the next 20 years,

mainly in association with population aging (Lan T., et al., 2021).

Besides the influence of aging, diabetes has also been proven as one of the main

causes of heart failure. Diabetic patients carry a four- to five-fold increased risk of heart

failure. At an early stage, diabetic cardiomyopathy is manifested by diastolic heart failure 2

Reproduced with permission of copyright owner. Further reproduction prohibited without permission.